

Anand Niketan

Maninagar Campus

Grade : XII

Subject : Physics

Chapter – 1,2,3,4

Date : 02/07/2019

Practice Worksheet

• General instructions:

- The question paper comprises of two sections A and B. i.
- Question no 1 to 27 in section A are one marks questions. ii.
- Proper method employed to reach the solution has to be mentioned in the answer sheet. iii.

$$c = 3 \times 10^8 \text{ m/s}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2\text{C}^{-2}$$

Mass of electron = $9.1 \times 10^{-31} \text{ kg}$

SECTION A

1. The force acting between two-point charges is F. What is the force if the magnitudes are halved and the distance between them is doubled?

	(a) F	(b) 4F	(c) 8F	(d) 0.5F
2.	An electric dipole is	placed in a uniform field.	. The resultant forc	e acting on it will

- (a) Always be zero.
- (b) Depends on its relative position.
- (c) Never be zero.
- (d) Depends on its dipole moment.
- 3. The electric force acting between two point charges kept in vacuum at a certain distance is K. If these charges are kept in a medium of dielectric constant Y, what is the force acting between them?

(a) F (b) YF (c)
$$Y^2F$$
 (d) 0.5Y

- 4. The distance between two point charges -q and 4q is 'r'. A third charge Q is placed at their midpoint. The resultant force acting on -q is zero. Then Q = ?
 - (d) NOTA (a) –q (b) q (c) 0
- 5. The linear charge density on the circumference of a circle with radius 'a' varies as $\lambda = \lambda_0 \cos\theta$. The total charge on it is.....
- (a) zero (b) ∞ (c) $\pi a \lambda_0$ (d) 2πa 6. When a charge of 10μ C is enclosed by a closed surface, the flux passing through the surface is ϕ . Now another charge of -10µC charge is placed inside the closed surface, then the flu passing through the surface is

$$2\phi$$
 (b) ϕ (c) 4ϕ (d) 0

- 7. The liquid drop has a mass 'm' and a charge 'q'. What should be the magnitude of the electric field E to balance this drop?
 - (a) mg/q(b) E/m (c) mgq (d) mq/g
- 8. A charge Q is placed at the center of a cube. The electric flux passing through any one surface of the cube is.....
- (a) Q/E_0 (b) $Q/2E_0$ (c) $Q/4E_0$ (d) $Q/6E_0$ 9. The dimension of permittivity of free space is

(a) $M^{-1}L^{-3}T^2C^2$ (b) $M^{-1}L^{2}T^{-3}C^{-1}$ (c) $M^0L^0T^0C$ (d) NOTA

10. An electric dipole is placed at the center of a sphere. The flux passing through the surface of the sphere is

(a) ∞ (b) 0 (c) can't say (d) between and ∞ .

(a)

11. For a uniform electric field $\mathbf{E} = E_0(\mathbf{i})$, if the	electric potential at $x = 0$ is zero, then the value of electric				
field at $x = +x$ will be					
	(c) $x^2 E_0$ (d) $-x^2 E_0$				
12. The line integral of an electric field along the circumference of a circle of radius r, drawn with a point charge Q at the center will be					
(a) kQ/r (b) $Q/2E_0r$	(c) zero (d) $2\pi Qr$				
	10 ⁻⁸ C travels from a point A having an electric potential of				
600V to a point B having zero potential. What is the change in its kinetic energy? (a) $-6 \times 10^{-6} \text{ J}$ (b) $-6 \times 10^{6} \text{ J}$ (c) $6 \times 10^{-6} \text{ J}$ (d) $-6 \times 10^{6} \text{ J}$					
14. A particle having mass m and charge q is at rest. On applying a uniform electric field E on it, it starts to move. What is the KE when it travels a distance y in the direction of force?					
(a) qE^2y (b) qEy^2	(c) qEy (d) q^2Ey				
15. A parallel plate capacitor is charged and then isolated. Now a dielectric slab is introduced in it which of the following will remain constant?					
(a) Electric Charge (b) Potential D	ifference (c) Capacitance (d) Energy				
16. A moving electron approaches other electron	. What will happen to the potential energy of the system?				
(a) Remains Constant (b) Increases (c) Decreases (d) NOTA					
17. Energy of a charged capacitor is U. Now it is removed from the battery and connected to anther identical uncharged capacitor in parallel. What will be the energy of each capacitor now?					
(a) 3U/2 (b) U	(c) $U/4$ (d) $U/2$				
	R is to be carried out using Wheatstone bridge. Two students				
perform an experiment in two ways. The firs	t students takes $R2 = 10 \Omega$ and $R1 = 5 \Omega$. The other student				
takes $R2 = 1000 \Omega$ and $R1 = 500 \Omega$. If both t	ake $R3 = 5 \Omega$, find the unknown resistance.				
(a) 50Ω (b) 500Ω	(c) 10Ω (d) 1000Ω				
19. Two concentric rings are kept in the same pla	ane. Number of turns in both the rings are 20. Their radii				
are 80 cm and 40 cm and they carry currents	of 0.6 A and 0.4 A respectively, in opposite directions.				
The magnitude of the magnetic field produce	μ d is μ_0 T.				
(a) 4 (b) 2	(c) $10/4$ (d) $5/4$				
	accelerated at a potential difference 'V' and then entered				
	rforms a circular motion of radius 'R'. The charge to mass				
(a) $2V/B^2R^2$ (b) V/2BR	(c) $VB/2R$ (d) mV/BR				
	us 'r', perpendicular to a uniform magnetic field B. The				
kinetic energy gained by the electron in half (a) $\frac{1}{2}$ mv ² (b) $\frac{1}{4}$ mv ²					
	(c) 0 (d) $\pi r Bev$				
magnitude of force per unit length of one wir	I are kept at a separation 'r' from each other. Hence the				
(a) $\frac{\mu_0 I^2}{r^2}$ (b) $\frac{\mu_0 I^2}{2\pi r}$	(c) $\frac{\mu_0 I}{2\pi r}$ (d) 0				
23. A long wire has a steady current. When it is bent in a circular form, the magnetic field at it's centre isB. Now if this wire is bent in a loop of 'n' turns, what is the magnetic field at the centre?					
(a) nB (b) n^2B	(c) 0 (d) nB^2				
	meter bridge. Student chooses the standard resistance S to				
be 100 ohms. He finds the null point at $l1 = 2.9$ cm. He is told to attempt to improve the accuracy.					
Which of the following is a useful way?					
 (a) He should measure l1 more accurately. (b) He should change S to 1000 change and repeat the experiment. 					
(b) He should change S to 1000 ohms and repeat the experiment.(c) He should change S to 3 ohms and repeat the experiment.					
(d) He should give up hope of a more accurate measurement with a meter bridge.					
25. The capacitance of a parallel plate capacitor formed by the circular plates of diameter 4 cm is equal to					
the capacitance of a sphere of diameter 200 cm. find the distance between the two plates.					
(a) 2×10^{-4} m (b) 1×10^{-4} m	(c) 3×10^{-4} m (d) 4×10^{-4} m				

- 26. If a capacitor of 600 μ F is charged at a uniform rate of 50 μ C/s, what is the time required to increase its potential by 10 Volts.
- (a) 500 s
 (b) 6000 s
 (c) 12 s
 27. The area of every plate shown in the fig. is A and the separation between the successive plates is d. What is the capacitance between points a and

(d) 120 s

- b?
- (a) $\mathcal{E}_0 A/d$ (b) 2 $\mathcal{E}_0 A/d$ (c) 3 $\mathcal{E}_0 A/d$ (d) 4 $\mathcal{E}_0 A/d$.

SECTION B

- 1. A 12pF capacitor is connected to a 50V battery. How much electrostatic energy is stored in the capacitor?
- 2. Derive the equation of potential energy of an electric dipole in an external electric field.
- **3.** Derive the equation for electric field of an electric field for a point on its axis.
- 4. An electric dipole with dipole moment 4×10^{-9} C m is aligned at 30° with the direction of a uniform electric field of magnitude 5×10^4 NC⁻¹. Calculate the magnitude of the torque acting on the dipole. Derive the equation for a dipole in a uniform magnetic field.
- **5.** Derive the gyromagnetic ratio.
- 6. Derive the equation for electric field due to an electric dipole, for the points lying on the equatorial plane.
- 7. Derive the equation for force due to multiple charges.
- 8. Write a note on Van De Graff generator.
- 9. Derive the equation for the magnetic Field on the Axis of a Circular Current Loop
- 10. a) Explain and derive the equation for a potentiometer.b) Derive the equation for internal resistance of a cell.
- **11.** a) Derive the equation for capacitance.
 - b) Write a note on effect of dielectric on capacitance.
- **12.** a) Write a note on drift velocity.
 - b) Write a note on Mobility.